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Abstract

The objective of this paper is to evaluate a number of shell elements. At the same time, a new element is presented that is
inspired by the quadrilateral heterosis element, Q8H, and is designated herein as the triangular heterosis element, T6H.
Both elements employ the selectively reduced integration method. The elements investigated in this study include
ABAQUS’s three general-purpose shell elements, ANSYS’s six-noded triangular element, T6, and the high-performance
MITC9 element available in ADINA. The assessment is carried out by subjecting the various elements to several bench-
mark problems. It is found that for regular meshes, Q8H out-performs other elements and is comparable to MITC9.
The performance of T6H is shown to be comparable to that of T6 in most test cases, but superior when very thin shells
are considered.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Shell structures are widely encountered in many engineering applications and are commonly used in the
aerospace, aeronautical and automobile industries. Plate structures are a special case of shell structures
because shell theories are a generalization of plate theories. Shell theory is the most difficult amongst structural
theories such as curved beam and plate, because it involves a dimensional reduction procedure and must deal
with initial curvatures. Shell structures exhibit coupling phenomena that are absent in plates. For example, the
well-known membrane–bending coupling is not seen in plate, unless geometrically nonlinear theory is consid-
ered and/or anisotropic materials are used. Consequently, shell finite elements are complex compared to other
structural elements. A list of references that detail different shell theories and shell elements developed by
various groups of researchers can be found in Noor (1990); Noor et al. (1989) and Wempner (1990). Despite
their complexities, to forgo the use of shell elements in favor of solid elements would incur substantial
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computational costs for the same level of accuracy. For these reasons, shell elements are still the focus of con-
siderable research, as evidenced by recent publications such as Liu et al. (2000) or Zhang et al. (2000).

In the development of plate and shell elements for general applications, it is necessary to include transverse
shear deformations that play an important role for the case of thick plates/shells and thin plate/shells when
made of anisotropic materials. In general, transverse shear is accounted for by making use of Mindlin-
Reissner plate/shell theory, denoted ‘‘first order theory’’, which involves a constant through-the-thickness
transverse shear distribution. High order plate theories also exist; for example, Reddy (1984) presented a plate
formulation where the transverse shear distribution through the thickness is quadratic.

It is well known that displacement based Mindlin-Reissner plate/shell elements often exhibit shear locking
when elements become thin. For shell elements and curved geometries, membrane locking might also occur.
Shear and membrane locking are particularly severe for low-order (linear and quadratic) elements. To over-
come shear locking, the following approaches can be used: (a) reduced/selective integration (Zienkiewicz et al.,
1971; Pugh et al., 1978; Hughes et al., 1978; Hughes and Liu, 1982), (b) discrete constraints enforcement
(Batoz and Lardeur, 1989; Batoz and Katili, 1992), (c) assumed transverse shear strain (McNeal, 1982; Huang
and Hinton, 1986; Jang and Pinsky, 1987), (d) mixed interpolation that uses different interpolations for the
generalized displacements (displacement and rotation) and transverse shear strain fields (Bathe and Dvorkin,
1986; Bucalem and Bathe, 1993; Chapelle and Bathe, 2003) and (e) anisoparametric interpolation that inter-
polate the displacement and rotations with different order polynomials (Tessler and Hughes, 1985). Some of
these approaches are also used to remedy membrane locking, especially the reduced/selective integration
method and the mixed interpolation approach.

A shell element should be applicable to simple plate geometries as well as complex shell geometries for both
thick and thin structures. It should provide good accuracy for both displacement and stresses with relatively
low cost in terms of CPU time. Finally, it should be sufficiently robust, i.e., should present low sensitivity to
element distortion.

In this paper, the performance of several shell elements is reviewed by comparing their predictions in a
number of benchmark tests. Among the elements considered are the quadrilateral quadratic heterosis element,
Q8H, and the mixed interpolation of tensorial components element, MITC9, developed by Bathe and his
coworkers (Bucalem and Bathe, 1993; Chapelle and Bathe, 2003). A new triangular element named T6H
derived from the concepts of Q8H is also presented. The paper begins with a short description of the elements
investigated. The predictions of the various elements for several benchmark problems are then presented and
discussed. Conclusions are offered in the last section of the paper.

2. Presentation and description of the shell elements investigated

Many different shell formulations and elements exist, and it is almost impossible to evaluate them all. In this
paper, the performance of selected shell elements is reported and their predictions are compared for a number
of benchmark tests. Common shell elements selected for this article include those found in the well-known
commercial finite element software package, ABAQUS. These are the S4R, S4 and S3R elements. Another
element chosen for this report is the six-noded triangle element, denoted T6, found in the commonly used finite
element software package, ANSYS. Besides these elements, the eight-noded quadrilateral heterosis element,
Q8H, the new element mentioned above, T6H, and the mixed interpolation of tensorial components element,
MITC9, are also included in this work. The T6 element constitutes a benchmark for the T6H element.

The elements investigated fall into two categories: (I) Q8H, MITC9, T6H, T6 and (II) S3, S4, S3R. The
elements in the first group are degenerated three-dimensional (3D) solid elements, whereas those in the second
group are based on various shell theories. A description of these elements is given in the following paragraphs.

2.1. Q8H element

Hughes and Cohen (1978) first introduced the quadratic heterosis element Q8H with reduced/selective inte-
gration technique for plate bending. For very thin plates, this element is reported to outperform the serendip-
ity element Q8 which uses a uniformly reduced integration rule and presents shear locking for some highly
constraint boundary conditions, e.g. clamped conditions. It is also reported that Q8H has convergence
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characteristics equivalent to those of the Q9 Lagrange element based on the reduced/selective integration tech-
nique, but Q9 might exhibit some artificial mechanism while Q8H does not, see Hughes (1987) and the numer-
ical integration section below. It is interesting to mention, the plate bending element Q8H was shown by Lee
and Wong (1982) to be equivalent to an element based on a mixed formulation resulting from the modified
Hellinger–Reissner principle. This mixed model element does not have any spurious mechanism. In view of
this equivalence, Q8H should not be expected to present monotonic convergence characteristics. For the pres-
ent work, a Q8H Mindlin shell element was coded based on the degenerated 3D formulation. The detail of this
formulation can be found in Zienkiewicz (1977).

2.1.1. Geometry

Consider the shell element depicted in Fig. 1. n1 and n2 are the two curvilinear coordinates lying in the mid-
dle plane x of the shell, and n3 is the coordinate in the thickness direction. The global Cartesian coordinate
system (O,xi) and the associated unit vectors ei is also shown.

Fig. 2 illustrates an arbitrary point P on the middle plane x, the two covariant vectors aa(a = 1,2) and the
normal unit vector n at P. Fig. 3 shows the side profile of the shell element where Q is an arbitrary point in the
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thickness direction. t1 is the unit vector defined from a1 so that (ta,n) forms an orthonormal basis at P.
Similarly, (Ta,n) constitutes an orthonormal basis at Q.
2.1.2. Discretization
The Q8H shell element considered herein is such that the geometrical terms are discretized using the 8 ser-

endipity interpolation functions. For example, the Cartesian coordinates of P ; x0
kðk ¼ 1; 2; 3Þ, are
x0
k ¼

Xn1

i¼1

N ð1Þi x0
ik ð1Þ
where x0
ik are the coordinates of node i (Fig. 2); N ð1Þi are precisely the serendipity interpolation functions with

n1 = 8.
The unit normal vector n is given by
n ¼
Xn1

i¼1

N ð1Þi ni ð2Þ
where ni are the normal vector at node i.
The position vector OQ is given by
OQ ¼
X3

k¼1

Xn1

i¼1

N ð1Þi x0
ikek þ

n3

2

Xn1

i¼1

N ð1Þi hini ð3Þ
where hi = h is the constant thickness of the shell element.
The displacement vector U of the point Q is discretized as,
U ¼
X3

k¼1

Xn1

i¼1

N ð1Þi uikek þ
n3

2

Xn2

i¼1

N ð2Þi hið~hi2ti1 � ~hi1ti2Þ ð4Þ
where uik are the displacements of node i on the middle plane; ~hi1; ~hi2 are the two rotations at node i; ti1, ti2 are
the two vectors t1, t2 at node i. N ð2Þi represent the Lagrange interpolation functions with n2 = 9. In the above
equation, n3 varies from �1 to 1.

The heterosis (parent) element is shown in Fig. 4. The external nodes have five degrees of freedom or dofs
and the internal node two dofs. The number of dofs of the quadrilateral heterosis element is thus 42.
2.1.3. Numerical integration

The heterosis element uses the selectively reduced integration technique such as that reported in Carnoy
and Laschet (1992). This technique generalizes Hughes’ segregation method (Hughes and Liu, 1982) to curved
shell elements. Bending, membrane and shear strains are separated in the local strain tensor (with respect to
the local Cartesian axes) at a point of the shell. The bending part of the stiffness matrix is integrated with a
normal integration scheme using nine Gauss points; whereas for the shear and the membrane parts, the four
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Fig. 4. Parent heterosis element.
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Gauss point reduced integration scheme is used. The membrane part is that of the membrane–bending
coupling which depends only on the displacements and not the rotations. Two Gauss points are used through
the thickness.
2.1.4. Mechanisms

Carnoy and Laschet (1992) reported that the Q8H element based on the selectively reduced integration
method possesses one membrane artificial mechanism, which is not communicable, i.e. this zero energy mode
does not propagate in a mesh of two or more elements. By analyzing the eigenmodes of the stiffness matrix of a
single element, the stiffness matrix was found to exhibit a membrane zero energy mode, in addition to the six
legitimate rigid body modes. But when the global stiffness matrix of a mesh of two then four elements is con-
sidered, the only zero energy modes found are those of the six rigid body motions, in agreement with Carnoy
and Laschet (1992). Although this is not a formal proof of the correct rank of the global stiffness matrix from a
mesh featuring an arbitrary number of elements, in practice, the Q8H element ‘‘can be viewed as having cor-
rect rank’’ as mentioned by Carnoy and Laschet (1992).
2.2. T6H element

The motivation for developing the T6H is to provide a quadratic triangular element in addition to Q8H to
provide flexibility in modeling shell structures. The first author of the present paper developed this element
while employed as a consultant by Electricité de France (EDF). The two elements Q8H and T6H were imple-
mented in the in-house software of EDF (Massin et al., 2000), called the Code_Aster, which is now in the pub-
lic domain. This T6H element is inspired by the Q8H element. The seventh internal node has only two dofs as
shown in Fig. 5. The number of dofs of this triangular ‘‘heterosis’’ element is thus 32.

For the triangular element, the six functions N ð1Þi are those of the quadratic T6 element and the seven func-
tions N ð2Þi comprise cubic polynomial resulting from the interpolation function corresponding to internal node
of element T10. The seven N ð2Þi functions are given in the Appendix.
2.2.1. Discretization
Eqs. (1)–(4) still apply for this element, but here, the functions N ð1Þi are Lagrange interpolation functions of

the element T6, thus n1 = 6; the functions N ð2Þi are cubic polynomials resulting from the shape function cor-
responding to the internal node of the element T10 with n2 = 7. These seven interpolation functions are given
in the Appendix. For this reason, unlike T6, T6H is not a pure quadratic element.

Although T6H uses the concepts of Q8H, the interpolation functions of T6H are not homogeneous as
they combine quadratic and cubic polynomials. This scheme, which interpolates the rotations with polyno-
mials of higher degree than those approximating the displacements, is not recommended, in general. Rather,
the inverse is recommended to avoid the shear locking; in which case, a normal integration rule can be
employed. However, T6H is based on the reduced/selective integration technique, which should alleviate
locking.
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Fig. 5. Parent heterosis triangular element.
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2.2.2. Numerical integration

Like the Q8H element, the selectively reduced integration procedure is applied. The bending term is
integrated with a normal rule using a seven-point Hammer scheme, whereas both shear and membrane
terms (the latter being the membrane–bending coupling which depends only on displacements and not rota-
tions) are integrated with a reduced three-point Hammer scheme. Two Gauss points are used through the
thickness.

2.2.3. Mechanisms

To identify the potential artificial mechanisms of the T6H element based on the selectively reduced integra-
tion method, the eigen-modes of the stiffness matrix of a single element are analyzed. Interestingly, the results
show the sole six legitimate rigid body modes, thus no spurious mechanism has been found. And, not surpris-
ingly, when the global stiffness matrix of a mesh of two elements is investigated, no spurious mechanism is
observed. The fact that T6H does not possess any artificial mechanism at the element level is of high impor-
tance, as it ensures the correct rank of the global stiffness matrix from a mesh of an arbitrary number of
elements.

2.3. T6 element

The next element chosen for this study is the six-noded triangular element found in the SHELL93 library of
the finite element software package, ANSYS, see ANSYS (1998). It is capable of performing both kinematic
and material nonlinear analyses. This element is obtained through the degeneration of the eight-noded Q8
quadrilateral element. This element is selected as a benchmark for the T6H element. The two elements, T6
and T6H, are quite similar, but the formulation of the latter is more complex as it has an internal node.
The uniformly reduced integration rule is employed in the T6 element with a three-point Hammer scheme.
Two Gauss points are used through the thickness.

The Q8 element is based on a uniformly reduced integration scheme and features two artificial mechanisms,
which are not communicable, e.g. see Carnoy and Laschet (1992). As mentioned above, the T6 element is the
degenerated version of Q8, and uses a uniformly reduced integration rule. Thus it should also possess artificial
mechanisms, but it is unclear whether they are communicable or not.

2.4. S4, S4R and S3 elements

These elements are part of the commercial software ABAQUS and are based on a thick shell theory. They
serve as general-purpose shell elements in the ABAQUS element library. The shell formulation considered is
that of finite-membrane strain, therefore, these elements can be used to perform large strain analyses. They are
widely used for industrial applications because they are suitable for both thin and thick shells. It is thus useful
to compare their performance with that of the other shell elements presented above.

The S4 element uses a normal integration rule with four integration points. The assumed strains approach is
employed to prevent shear and membrane locking. The S4R element uses a reduced integration rule with one
integration point that makes this element computationally less expensive than S4. For S4R, the assumed
strains method is modified, so that a one point integration scheme plus hourglass stabilization is obtained.
Hourglass modes, a form of artificial mechanisms, can arise from the use of the reduced integration rule.
The hourglass stabilization is performed through an hourglass control parameter. The S3 element is obtained
through the degeneration of the S4 element and thus, ‘‘may exhibit overly stiff response in membrane defor-
mation’’, as discussed in ABAQUS (1998). The ABAQUS shell library also includes the general purpose S3R
element. This element is equivalent to S3, yielding identical results to those of S3 for all the problems inves-
tigated in this paper. More details can be found about these four elements in ABAQUS (1998).

2.5. MITC9 element

Several shell formulations have been recently developed that have distinguished themselves from other
shell formulations because of their versatility, accuracy and robustness. Of particular interest, is the mixed
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interpolation of tensorial components (MITC) element developed by Bathe and his coworkers (Bathe and
Dvorkin, 1986; Bucalem and Bathe, 1993). The MITC approach is based on the interpolation of strains at
chosen sampling points (so-called ‘‘tying points’’). The key issue of this approach is the selection of the tying
points and corresponding interpolation functions. In the present paper, the MITC9 will be used; the interpo-
lated strain components are defined as
e11 ¼ Raga
rre

a
11; e22 ¼ Raga

sse
a
22; e12 ¼ Raga

rse
a
12 ð5aÞ

e13 ¼ Raga
rre

a
13; e23 ¼ Raga

sse
a
23 ð5bÞ
where ga
rr, ga

ss and ga
rs are the strain interpolation functions and ea

ij the strain components at the a tying point
which are obtained by direct interpolation using the finite element displacement assumptions. The location of
the tying points and corresponding strain interpolation functions can be found, for example, in Bathe and
Dvorkin (1986); Bucalem and Bathe (1993) for each strain components. For the MITC9, the strain compo-
nents e11 and e13 are interpolated based on six tying points, using the shape functions ga

rr, the strain compo-
nents e22 and e23 are interpolated based on six tying points, using the shape functions ga

ss, and finally, the
in-plane shearing strain components e12 and e13 are interpolated based on four tying points, using the shape
functions ga

rs. This approach takes care of both membrane and transverse shearing strain locking problems.
The stiffness matrix of the element is then formed based on these interpolated strain components and full inte-
gration is used. The element does not present any spurious mechanism. In view of the more complicated strain
interpolation and full integration scheme, the MITC9 is a more computationally expensive element, but it is
accurate and fairly insensitive to element deformations. The numerical results for MITC9 are those of the
ADINA program 900 nodes version (ADINA, 2005).

Remark

(1) It is of interest to note that Q8H and T6H are degenerated 3D, rather than isoparametric elements.
(2) Except for MITC9, which features 5 dofs per node (with two rotations), all the elements described above

have three rotations per node. The third rotation is the fictitious rotation about the normal and is asso-
ciated with an artificial small stiffness.
3. Numerical results

The elements described above were exercised on a series of benchmark problems to test their ability to han-
dle different modes of deformation, membrane strains, bending strains or membrane–bending coupling due to
initial curvatures, rigid body motion, and to prevent shear and membrane locking. Shear locking can be
expected since all the problems considered deal with thin or very thin shells and plates, while membrane lock-
ing can also be expected in all the shell problems.

Their performance is to be evaluated in terms of accuracy as a function of the total number of dofs, and
robustness, i.e. low sensitivity to element distortion. Note that a more rigorous criterion of performance would
be CPU time, however, this is quite difficult to establish because the various shells elements were run on dif-
ferent computer systems. As the elements Q8H and T6H have 6 and 3 dofs for external and internal nodes,
respectively, the total number of dofs will be taken as a measure of mesh refinement instead of the total num-
ber of nodes.
3.1. Scordelis-Lo barrel roof under distributed load

The barrel roof test is a classical benchmark problem that is often used to test membrane locking. Bending
strains, although significant, are less important than membrane strains. The geometry of the problem is shown
in Fig. 6a. In the present case, angle a subtended by the arc is 80�. The length of the roof is L = 6 m; the radius
of curvature is R = 3 m and its thickness t = 0.03 m. The material has a Young’s modulus of E = 30 GN/m2

and a Poisson’s ratio of v = 0. The load it experiences is due to its weight, amounting to the force per unit
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Fig. 6a. The Scordelis-Lo barrel roof test – balanced 8-triangular element mesh.
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surface fz = 6250 N/m2. The two curved edges of the roof are supported by rigid diaphragms while the two
straight edges remain free.

Uniform meshes are used for the quadrilateral elements, while the triangular meshes used are arranged as
shown in Fig. 6a. This figure illustrates an 8-element mesh, which is obtained from a 2-element per edge mesh
for quadrilateral elements. The subsequent refinement of this mesh is a 32-element mesh, obtained with a 4-
element per edge mesh for quadrilateral elements, see Fig. 6b for illustration. Such a balanced arrangement,
called ‘‘English’’ mesh, as illustrated in Fig. 6a (or Fig. 6b), gives better results than when the triangles are all
oriented along the same direction, called biased meshes, as shown in Fig. 6c and 6d. It is worth noting that the
meshes for the S3 element are such that the numbers of dofs are identical, but the number of elements is twice
that for the S4 and S4R elements. This will be the case as well in the problems that follow. All the elements
investigated converge to the deep shell solutions, WB = 3.61 cm and WC = 0.541 cm, which are used to nor-
malize the results.
Fig. 6b. Balanced 32-triangular element mesh, for clarity, the initial curvature is not shown.

(c) (d)

Fig. 6c and 6d. Biased 8-triangular element meshes.
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As can be observed from Figs. 7 and 8, the Q8H and MITC9 elements exhibit the best performance. Among
the ABAQUS elements, S4 outperforms S4R as the former evaluates more accurately the membrane strains
(ABAQUS, 1998), which constitute the dominant deformation in this example. As expected, S3 shows stiffer
response than S4, however, the solutions converge at an acceptable rate. The performances of the T6H and T6
elements are equivalent for this problem and are comparable to that of S3. It is worth noting that the char-
acteristics of monotonic convergence ‘‘from below’’ are no longer guaranteed for the different elements inves-
tigated as a pure displacement based finite element using exact integration rule would do. This is illustrated in
this example by the Q8H, S4 and S4R elements.

3.2. Pinched cylinder with rigid end diaphragms

A cylinder with rigid end diaphragms is pinched by the application of opposing radial point loads at the
top and bottom of the cylinder at the mid-span. The pinched cylinder presents a very severe test case, and
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Fig. 9. Geometry and loading of the pinched cylinder test with balanced English mesh.
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constitutes a good problem to assess the performance of shell elements. Both membrane and inextensible
bending strains are important and so is the membrane–bending coupling. In this problem, the membrane
strains field is also known to be complex. Bending is mainly localized near the loading points, and the gradi-
ents of the displacements along some edges are important (Batoz and Dhatt, 1992). For this problem, severe
membrane locking is expected as bending is inextensible. Due to the three planes of symmetry only one eighth
of the cylinder is modeled, as shown in Fig. 9. The remaining edge is left free. The load has a magnitude of
F = 0.25 N and the length and radius of the cylinder are L = 300 m and R = 300 m, respectively. The material
properties are E = 3 MN/m2 for the Young’s modulus and v = 0.3 for Poisson’s ratio.

Uniform meshes are used for the quadrilateral elements. The triangular meshes used are arranged as shown
in Fig. 9 (similar to Fig. 6a). Here again, this balanced (‘‘English’’) mesh gives better results than when the
triangles are all oriented in the same manner (Fig. 6c and 6d). The parameter used for comparing the different
elements is the radial displacement under the point of loading. The results are normalized by the reference
solution of 1.8248e�5 m, given in Belytschko et al. (1985).

For this severe test, the best performance is obtained with MITC9, and next with Q8H elements, as illus-
trated in Fig. 10, although convergence is slower than in the previous example. S4R now performs slightly
better than S4, the former element should yield better predictions for bending dominant problems, and this
is the case near point C. Here again, S3 is stiffer when compared to S4. The performance of T6H is quite sim-
ilar to that of T6. Both elements converge slowly due to severe membrane locking. For this example, it is inter-
esting to note that all the elements converge monotonically to the reference solution. The results of MITC9 are
in excellent agreement with those reported by Bucalem and Bathe (1993).
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Fig. 10. Displacement of pinched cylinder at point of loading.
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3.3. Pinched hemisphere

The pinched hemisphere is another common test problem. This problem is often used to detect severe mem-
brane locking, and test the elements’ ability to represent rigid body motions that form a significant component
of the total displacement of the structure. The problem comprises a hemispherical dome radially loaded at its
equator by two pairs of opposing point loads acting in orthogonal directions. The problem is illustrated in
Fig. 11 where only a quarter of the dome is modeled because two orthogonal meridonial planes are planes
of symmetry. The top and bottom edges of the hemisphere are unsupported. Unlike the previous test cases,
the shell structure is doubly curved. For this problem, bending strains are more important than membrane
strains.

For the test case, the radius of the hemisphere is R = 10 m and the thickness of the shell is t = 0.04 m. The
shell has a Young’s modulus of E = 68.25 MN/m2 and Poisson’s ratio of v = 0.3. The top edge of the hemi-
sphere is at latitude of 18�. The point loads applied to the hemisphere have a magnitude of F = 1 N. Uniform
meshes are used for the quadrilateral elements, while the triangular elements used are balanced, as shown in
Fig. 11b. The results obtained for the different shell elements are presented in Fig. 12. The graphs show the
radial displacement of the hemisphere at the point of loading normalized by the reference solution of
0.094 m, see McNeal and Harder (1985). Because of symmetry, the magnitudes of the radial displacement
at the points of loading should be equal. This is the case when quadrilateral elements are used and when
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Fig. 11. Geometry and boundary conditions of hemispherical shell test. (a) Biased mesh; (b) Balanced mesh.
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Table 1
Radial displacements at loading points for the T6 element using biased and balanced meshes

Dofs (nodes per edge) Biased mesh: UX Biased mesh: �UY Balanced mesh: UX = �UY

150 (5) 0.004635 0.004292 0.003737
486 (9) 0.008334 0.007719 0.008856
1734 (17) 0.037311 0.036716 0.044272
3750 (25) 0.069077 0.068410 0.074096
6534 (33) 0.084421 0.082854 0.085653
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the triangle elements are balanced, see Fig. 11b. However, when using the biased arrangement of the triangle
elements shown in Fig. 11a, the shell becomes more compliant in the x-direction as compared to the y-direc-
tion: jUXj > jUYj. This phenomenon is illustrated in Table 1 for the T6 element.

The results illustrated in Fig. 12 show that MITC9 then S4R and S4 elements give very good accuracy even
with coarse, 2 · 2 meshes featuring 125 dofs (MITC9) and 54 dofs (S4R and S4). For coarse meshes, these
three elements outperform Q8H, which exhibits severe membrane locking for the 2 · 2 mesh featuring 138
dofs. However, very high convergence rate is shown when the mesh is slightly refined, and convergence is
reached for Q8H with relatively coarse, 8 · 8 mesh (1542 dofs). Note that unlike S4R, S4 does not converge
to the reference solution for refined meshes; numerical results show an error of about one percent. The S3 ele-
ment yields good performance as compared to that of T6 and T6H, but here again, inferior to that of S4. The
convergence rate of these two elements is slow, denoting persisting membrane locking. The performance of T6
is slightly better than that of T6H. For this problem, also note the monotonic convergence for all the elements
except for S4R and S4. The results of MITC9 are in excellent agreement with those reported in Bucalem and
Bathe (1993).
3.4. Cantilevered pre-twisted beam

Cantilever pre-twisted beams have become common test problems for shell elements. In this problem, the
beam features a large initial twist such that its opposite edges are at a 90� angle with respect to each other. This
warping results in bending-membrane coupling. The pre-twisted beam is commonly used to evaluate the abil-
ity of quadrilateral elements to handle the double curvature geometries. For very thin beams, this problem will
also underline the sensitivity of shell elements to both shear and membrane locking, because the deformation
behavior consists of nearly inextensional bending.

The test problem is shown in Fig. 13a. The left horizontal edge is fixed, while the right edge is rotated 90�
with respect to the fixed end. Two loading cases are considered: an in-plane shear force Pz and an out-of-plane
shear force Py, as shown in Fig. 13a. The span of the beam is L = 12 m and its width b = 1.1 m. The problem is
solved for two beam thicknesses of h = 0.32 m, referred to as ‘‘thick beam,’’ in this case the loading is
Pz = Py = 1 N, and h = 3.2 mm referred to as ‘‘very thin beam,’’ in this case the loading is Pz = Py = 1e�6 N.
The material has a Young’s modulus of E = 29 MN/m2 and Poisson’s ratio v = 0.22.
Py

Pz

z
y

x

Fig. 13a. Cantilevered pre-twisted beam test.



A. Laulusa et al. / International Journal of Solids and Structures 43 (2006) 5033–5054 5045
3.4.1. Thick beam

For Q8H and MITC9, uniform meshes with one element across the width are used, e.g., 1 · 2, whereas for
T6H and T6, the meshes are two elements across the width (2 · 4) and are arranged as shown in Fig. 13b. An
additional balanced mesh with four elements (4 · 24) across the width is also considered, as shown in Fig. 13a.
For S4 and S4R, the meshes have two elements across the width; whereas for S3, there are 4 elements across
the width and the meshes are balanced, see Fig. 13a.

Figs. 14 and 15 show the predicted normalized displacements at the tip of the beam with respect to the ref-
erence solutions due to out-of-plane loading Py. The reference solutions are from beam theory: Uy = 1.75 and
Uz = �1.72 mm, see Batoz and Dhatt (1992). For this case, the deformation near the clamped end largely con-
sists of membrane strains. The best performances are obtained with MITC9 and Q8H elements. The curved
shell element S4 also yields very good results: its four nodes are not coplanar, a key to the proper handling of
the double curvature geometry of the problem. A flat shell element would yield very erroneous predictions, as
reported by Batoz and Dhatt (1992). The very stiff results exhibited by S3 as compared to those of S4 are not
surprising (Fig. 14), since the membrane strains are important for this loading case. Significant discrepancies
compared to the reference solutions are observed for the S4R element as well. The performances of T6H and
T6 are fair and comparable to each other.

Fig. 16 shows the results of in-plane loading Pz (reference solution Uz = 5.42 mm). For this case, the dom-
inant deformation is bending strain, although some membrane strains are present as well. Again, MITC9,
Q8H and S4 exhibit excellent performance. As expected, the predictions of the S4 and S3 elements are closer
than in the previous loading case, and those of the S4R element are in closer agreement with the reference
solution. As observed in the previous loading case, the performances of T6 and T6H are satisfactory and com-
parable to each other.

3.4.2. Very thin beam

In this case, the beam thickness is h = 0.0032 m, corresponding to an aspect ratio L/h = 3750. For Q8H and
MITC9, uniform meshes with one and two elements across the width are used, e.g., 1 · 8 and 2 · 8, plus one
finer mesh of 4 · 30, whereas for T6H and T6, 2, 4, 8 and 16 elements are used across the width with balanced
meshes. For S4, S4R and S3, the meshes are similar to those used for the thick beam.
Fig. 13b. Two elements in width mesh, the warping feature is not shown, for clarity.
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Fig. 14. Displacement Uy of 0.32 m thick beam at point of loading for Py = 1 N.



0.9

0.95

1

1.05

0 400 800 1200 1600 2000
Degrees of freedom

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t

Q8H

T6H

MITC9

T6

S4

S3

S4R

Fig. 15. Displacement Uz of 0.32 m thick beam at point of loading for Py = 1 N.
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Fig. 16. Displacement Uz of 0.32 m thick beam at point of loading for Pz = 1 N.
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Predictions are shown in Figs. 17a and 18a for out-of-plane loading; reference solutions from beam theory:
Uy = 1.296 mm, U z = �1.878 mm. Fig. 19a summarizes the results for in-plane loading; reference solution
Uz = 5.316 mm. In Figs. 17b,18b and 19b, the same results are presented excluding those of the T6 and
T6H elements, to enable comparison of the best performing elements. In view of the very large aspect ratio,
shear and membrane locking dominate the element response. Furthermore, the dominant deformation is
bending along the beam span for both loading cases, except in the immediate vicinity of the clamped end
for the case of out-of-plane loading. For in-plane loading, bending should be nearly inextensible. Excellent
performances are still obtained with MITC9 and Q8H elements. For Q8H, the convergence is not completely
monotonic for meshes between the 1 · 12 (414 dofs) and 2 · 8 (462 dofs) configurations; the latter mesh fea-
tures more dofs, but the former yields slightly better results, due to a better aspect ratio of the elements. The
transition from 1 · 12 to 2 · 8 meshes (375 and 424 dofs, respectively) also resulted in a decrease of the pre-
diction accuracy for MITC9. The drop is smaller than that observed for Q8H for the out-of-plane loading Py

(Figs. 17b and 18b), whereas for the in-plane loading Pz, the contrary is observed (Fig. 19b). For the MITC9,
convergence is nearly reached with the 2 · 8 mesh. For this element, also note the convergence ‘‘from above’’
for the component Uz of the out-of-plane loading Py (Fig. 18a or 18b). The S4R and S3 elements now yield
excellent predictions as well. In fact, their predictions are slightly better than those of the S4 element. The
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Fig. 17a and 17b. Displacement Uy of 3.2 mm thick beam at point of loading for Py = 1e�6 N.
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performance of the T6H and T6 elements are the poorest, but interestingly, the former shows a better conver-
gence rate than the latter, which suffers an even more severe locking effect.

In ADINA, shell directors at each node can be input independently. This option is useful when dealing with
complex surfaces and using very coarse meshes. Indeed, directors that are normal to the actual shell surface
can be input exactly, rather than using directors that are normal to the approximate surface defined by the
nodes of the coarse mesh. To illustrate this feature, Table 2 shows the predictions using these two types of
directors, when dealing with the 1 · 2 and 1 · 4 coarse meshes for the 3.2 mm thick, pre-twisted beam. Clearly,
in this case, using approximate directors has little effect on the accuracy of the predictions. A detailed study of
the effect of director orientation on the convergence characteristic of shell finite elements is reported by
Chapelle and Bathe (2003), Hiller and Bathe (2003); convergence of the MITC9 element is discussed by Bathe
et al. (2000).

For the pre-twisted beam, the shell’s surface is generated by the motion of a straight line sweeping along the
beam’s axis while rotating at a constant rate, from 0� to 90�. Two choices are now possible for the directors.
In the first case, directors, called shell directors, are selected to be normal to the shell’s surface. In the
second case, since this is a ‘‘pre-twisted beam’’ problem, directors, called herein as beam directors, are selected
to be normal to the beam’s cross-section, i.e. they rotate at a constant rate but remain in the plane perpendic-
ular to the beam’s axis. New calculations were performed using beam directors as a direct input to ADINA,
as assumed in the analytical beam theory used to calculate the reference solution. These new predictions,
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Fig. 18a and 18b. Displacement Uz of 3.2 mm thick beam at point of loading for Py = 1 e�06 N.
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labeled as MITC9b in Figs.17b, 18b and 19b, present a marked improvement, especially for the 1 · 2 mesh.
For the in-plane loading Pz case, Uz = 0.8814 and 0.9664 for the shell and beam directors, respectively.
For finer meshes (from 1 · 8 onward), both director types yield very similar predictions, as should be expected.
In the case of the thick beam, computations performed with the two types of directors showed very little
difference.

Finally, it is worth noting that for the very thin beam problem, most of shell elements investigated here,
especially MITC9 and Q8H, converge to solutions that are slightly stiffer than the beam theory solutions.

3.5. Morley skew plate under transverse load

The objective of this test is to determine the robustness of the elements to distortion in their geometry. The
simple test consists of a skew plate simply supported on all the edges and subjected to a uniform transverse
pressure p. The severity of the distortion increases as the skew angle a increases. The tests were carried for
two values of a:a = 60� and the more severe case, a = 30�. The Morley skew plate mainly tests for the effects
of bending of distorted plate/shell elements; shear strains are negligible. The sides L of the plate are of unit
length and the plate thickness is t = 0.01. The plate material has a Young’s modulus of E = 1 force per unit
area and a Poisson’s ratio of v = 0.3. The applied load has a magnitude of p = 1 force per unit area. Uniform
meshes are used for the quadrilateral elements, whereas the meshes used for triangular elements are shown in
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Fig. 19a and 19b. Displacement Uz of 3.2 mm thick beam at point of loading for Pz = 1e�6 N.

Table 2
Normalized displacements obtained with the approximate and exact directors for the 3.2 mm thick beam

1 · 2 mesh 1 · 4 mesh

Approximate directors Exact directors Approximate directors Exact directors

Out-of-plane loading Py: Uy 0.8616 0.8683 0.9694 0.9692
Out-of-plane loading Py: Uz 1.0472 1.0555 1.0070 1.0067
In-plane loading Pz: Uz 0.8814 0.8864 0.9711 0.9715
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Fig. 20. For this problem, the mesh orientation depicted in Fig. 20 yields better predictions than for a mesh
orientation along the other diagonal of the plate or for balanced meshes, as those used in the previous exam-
ples. The quantity of interest is the vertical deflection at the centre point C. The reference solution of 2.79552e4
unit length for a = 60� and 4.4553e3 unit length for a = 30� are used to normalize the results.

Since the deformation mostly consists of bending strains with little shearing deformations, the predictions
of the ABAQUS elements S4, S4R and S3 are similar; the more accurate evaluation of the membrane strain in
the S4 element as compared to S4R and S3 is of little importance here.

The predictions for a = 60� are plotted in Fig. 21. The MITC9, S4R, S4 and S3 elements yield excellent
predictions with faster convergence rates (especially S3) than those observed for the Q8H element; this latter
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element, however, converges monotonically to the reference solution at an acceptable rate. Elements T6H and
T6 give equivalent results and converge monotonically at an acceptable rate as well.

The predictions for a = 30� are plotted in Fig. 22. Interestingly, the best performances are observed for S4R
and S3 elements, while element S4 is hindered by shear locking and exhibits a lower convergence rate.
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Fig. 22. Displacement of Morley skew plate for a = 30� at center point C.
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Elements T6H, T6 and MITC9 show good performance. The results of MITC9 are in excellent agreement with
those reported in Bucalem and Bathe (1993). As observed in the previous case, the predictions of the two tri-
angular elements are comparable. The performance of element Q8H is rather poor, showing relatively lower
convergence rate due to persisting shear locking, which is clearly more severe than for a = 60�. These results
confirm the fact that the heterosis element Q8H is quite sensitive to mesh distortion, as observed earlier for
plate bending problems, see for instance, Lee and Wong (1982).

3.6. Circular plate under uniform pressure

The deformation of a circular plate is often used to verify results of new plate elements because analytical
solutions are readily available in this case. In this test problem, a circular plate clamped around its circum-
ference is subjected to a uniform transverse pressure. The deflection and bending moments at the centre point
P

x

O

y

Fig. 23. Mesh used for circular plate problem.
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are normally used to check the accuracy of the elements. This benchmark problem is used here to evaluate the
accuracy of transverse shear stress predictions when a classical mesh pattern is used for quadrilateral ele-
ments. For a single mesh, the predictions of the Q8H and MITC9 elements are compared to the analytical
solution. As with the Morley skewed plates, the circular plate is subject to bending loads with minimal shear-
ing. The plate used in this test has a radius of 10 m and a thickness h of 0.2 m. The material has a Young’s
modulus of E = 2.1 MN/m2 and Poisson’s ratio of v = 0.3. The pressure load has a magnitude of
p = 0.03072 N/m2. The classical mesh pattern is shown in Fig. 23; due to symmetry, only a quarter of the
plate is modeled.

The analytical solution for the transverse shear stress syz based on Mindlin/Reissner theory is plotted along
line OP in Fig. 24, together with the predictions of the Q8H and MITC9 elements. The calculated values are at
the common nodes of two elements. The transverse shear strain based on Mindlin/Reissner theory is constant
through the thickness and so is the stress, due the material homogeneity. The analytical solution for the shear
stress along OP is easily found to be syz = pr/2hk, where the shear correction factor is k = 5/6. Very good pre-
dictions are obtained from both MITC9 and Q8H elements when compared to the analytical solution. The
results of MITC9 and Q8H are also very close to each other. For both elements, the discontinuities at the junc-
tion nodes are within an acceptable range. It is worth noting that the mesh used is not a regular and contains a
number of distorted elements. Yet, as shown, excellent results are obtained with Q8H.

4. Conclusions

The following conclusions are drawn based on the numerical experiments conducted in this work:

(1) On the whole, the quadrilateral quadratic heterosis element Q8H based on the selectively reduced inte-
gration scheme is very efficient when relatively regular meshes are used. For regular meshes, the perfor-
mance of element Q8H is comparable to that of quadrilateral element MITC9 although for several test
cases studied, the convergence rate of MITC9 is slightly better than that of Q8H. With severely distorted
elements, Q8H exhibits low convergence rate, as observed by other researchers.

(2) MITC9 is the highest performance element: it combines accurate results for coarse meshes with insensi-
tivity to element distortions, although it is computationally more expensive than the others as it employs
a full integration scheme.

(3) In general, for regular meshes, MITC9 and Q8H outperform the other elements including S4, S4R and
S3 (or S3R), especially in the cases where complex deformations are encountered. S4, S4R and S3 are
general-purpose shell elements from the commercial software package, ABAQUS. The performance of
S4 is better than that of S4R and S3 for problems with significant membrane strains. For bending dom-
inated problems with minimum membrane strains, S4R and S3 yield comparable or better predictions.
S4 is computationally more expensive than S4R.

(4) Based on the concepts of Q8H, a new element, T6H called quadratic triangular heterosis element has
been presented. The interpolation functions of this element include quadratic and cubic polynomials.
T6H also uses the selectively reduced integration rule, but it presents no spurious mechanism,
while Q8H exhibits one membrane artificial mechanism, which is not communicable. For most prob-
lems tested, the performance of T6H is comparable to that of T6, used here as its benchmark. In
the case of very thin shells, T6H performs better than T6, which suffers more shear and/or membrane
locking than T6H. T6 is the quadratic triangular element from the commercial software package,
ANSYS.

(5) In general, the performance of T6 and T6H is the poorest among all the elements investigated. But, these
two elements are the sole that have shown monotonic convergence characteristic for all the problems
studied.

Appendix

The seven interpolation functions of the T6H element for the interpolation of the rotations ~ha are:
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N ð2Þ1 ðn1; n2Þ ¼ n2ð2n2 � 1Þ þ 1

9
N ð2Þ7

N ð2Þ2 ðn1; n2Þ ¼ ð1� n1 � n2Þ½2ð1� n1 � n2Þ � 1� þ 1

9
N ð2Þ7

N ð2Þ3 ðn1; n2Þ ¼ n1ð2n1 � 1Þ þ 1

9
N ð2Þ7

N ð2Þ4 ðn1; n2Þ ¼ 4n2ð1� n1 � n2Þ �
4

9
N ð2Þ7

N ð2Þ5 ðn1; n2Þ ¼ 4n1ð1� n1 � n2Þ �
4

9
N ð2Þ7

N ð2Þ6 ðn1; n2Þ ¼ 4n1n2 �
4

9
N ð2Þ7
where N ð2Þ7 is the interpolation function associated to the internal node of the T10 element; N ð2Þ7 is a cubic
polynomial,
N ð2Þ7 ðn1; n2Þ ¼ 27n1n2ð1� n1 � nÞ
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Massin, P., Laulusa, A., Mikdad, M.A.L. 2000. Eléments finis de coques volumiques, R3.07.04-A, Code_Aster, HI-75/00/006/A, EDF/

MTI/MMN, SAMTECH-France.
McNeal, R.H., 1982. Derivation of element stiffness matrices by assumed strain distribution. Nuclear Engineering and Design 70, 3–12.
McNeal, R.H., Harder, R.L., 1985. A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and

Design 1, 3–20.



5054 A. Laulusa et al. / International Journal of Solids and Structures 43 (2006) 5033–5054
Noor, A.K., 1990. Bibliography of monographs and surveys on shells. Applied Mechanics Review 43 (9), 223–234.
Noor, A.K., Belytschko, T., Simo, J.C. (Eds.), 1989. Analytical and computational models of shells, CED-vol. 3. ASME.
Pugh, E.D., Hinton, E., Zienkiewicz, O.C., 1978. A study of triangular plate bending element with reduced integration. International

Journal for Numerical Methods in Engineering 12, 1059–1078.
Reddy, J.N., 1984. A simple higher-order theory for laminated composite plate. Journal of Applied Mechanics 51, 745–752.
Tessler, A., Hughes, T.J.R., 1985. A three-node Mindlin plate element with improved transverse shear. Computer Methods in Applied

Mechanics and Engineering 50, 71–101.
Wempner, G., 1990. Mechanics and finite element of shells. Applied Mechanics Review, ASME 42 (5), 129–142.
Zhang, Y.X., Cheung, Y.K., Chen, W.J., 2000. Two refined non-conforming quadrilateral flat shell elements. International Journal for

Numerical Methods in Engineering 49, 355–382.
Zienkiewicz, O.C., Taylor, R.L., Too, J.M., 1971. Reduced integration technique in general analysis of plates and shells. IJNME 3, 275–

290.
Zienkiewicz, O.C., 1977. The Finite Element Method, third ed. McGraw-Hill.


	Evaluation of some shear deformable shell elements
	Introduction
	Presentation and description of the shell elements investigated
	Q8H element
	Geometry
	Discretization
	Numerical integration
	Mechanisms

	T6H element
	Discretization
	Numerical integration
	Mechanisms

	T6 element
	S4, S4R and S3 elements
	MITC9 element

	Numerical results
	Scordelis-Lo barrel roof under distributed load
	Pinched cylinder with rigid end diaphragms
	Pinched hemisphere
	Cantilevered pre-twisted beam
	Thick beam
	Very thin beam

	Morley skew plate under transverse load
	Circular plate under uniform pressure

	Conclusions
	Appendix
	References


